- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Moorman, Ruth (3)
-
Drucker, Robert (1)
-
Gille, Sarah T (1)
-
Griffies, Stephen M (1)
-
Haumann, F. Alexander (1)
-
Johnson, Kenneth S. (1)
-
Key, Robert M. (1)
-
MacGilchrist, Graeme A (1)
-
Maksym, Ted (1)
-
Manucharyan, Georgy E (1)
-
Mazloff, Matthew R (1)
-
Pang, Rachel Q (1)
-
Prend, Channing J (1)
-
Riser, Stephen C. (1)
-
Sarmiento, Jorge L. (1)
-
Smedsrud, Lars H. (1)
-
Talley, Lynne D (1)
-
Talley, Lynne D. (1)
-
Thompson, Andrew F (1)
-
Thompson, Andrew_F (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Moorman, Ruth; Thompson, Andrew_F; Wilson, Earle_A (, Geophysical Research Letters)Abstract Melt rates of West Antarctic ice shelves in the Amundsen Sea track large decadal variations in the volume of warm water at their outlets. This variability is generally attributed to wind‐driven variations in warm water transport toward ice shelves. Inspired by conceptual representations of the global overturning circulation, we introduce a simple model for the evolution of the thermocline, which caps the warm water layer at the ice‐shelf front. This model demonstrates that interannual variations in coastal polynya buoyancy forcing can generate large decadal‐scale thermocline depth variations, even when the supply of warm water from the shelf‐break is fixed. The modeled variability involves transitions between bistable high and low melt regimes, enabled by feedbacks between basal melt rates and ice front stratification strength. Our simple model captures observed variations in near‐coast thermocline depth and stratification strength, and poses an alternative mechanism for warm water volume changes to wind‐driven theories.more » « less
-
Haumann, F. Alexander; Moorman, Ruth; Riser, Stephen C.; Smedsrud, Lars H.; Maksym, Ted; Wong, Annie P.; Wilson, Earle A.; Drucker, Robert; Talley, Lynne D.; Johnson, Kenneth S.; et al (, Geophysical Research Letters)null (Ed.)
An official website of the United States government
